By Topic

Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wim H. Hesselink ; University of Groningen, Groningen ; Jos B. T. M. Roerdink

A general algorithm for computing Euclidean skeletons of 2D and 3D data sets in linear time is presented. These skeletons are defined in terms of a new concept, called the integer medial axis (IMA) transform. We prove a number of fundamental properties of the IMA skeleton, and compare these with properties of the CMD (centers of maximal disks) skeleton. Several pruning methods for IMA skeletons are introduced (constant, linear and square-root pruning) and their properties studied. The algorithm for computing the IMA skeleton is based upon the feature transform, using a modification of a linear-time algorithm for Euclidean distance transforms. The skeletonization algorithm has a time complexity which is linear in the number of input points, and can be easily parallelized. We present experimental results for several data sets, looking at skeleton quality, memory usage and computation time, both for 2D images and 3D volumes.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 12 )