By Topic

Adaptive Stabilization and Synchronization for Chaotic Lur'e Systems With Time-Varying Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we propose an adaptive scheme for the stabilization and synchronization of chaotic Lur'e systems with time-varying delay. Based on the invariant principle of functional differential equations, the strength of the feedback controller is enhanced adaptively to stabilize and synchronize chaotic Lur'e systems. The derivative-constraint that the time-varying delay is required to be differentiable and its derivation is less than one can be removed by using LaSalle-Razumikhin-type theorems. The time-varying delay is allowed to be bounded without any additional constraint or unbounded with derivative-constraint. This method is analytical, rigorous and simple to implement in practice. In addition, it is quite robust against the effect of parameters uncertainty and noise. Two examples are provided to show the effectiveness of the proposed scheme. The results of the paper demonstrate the fruitfulness of the modern feedback and adaptive control theory application to the stabilization and synchronization problems for delayed chaotic systems.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:55 ,  Issue: 5 )