By Topic

Semantic Annotation and Retrieval of Music and Sound Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Douglas Turnbull ; Dept. of Comput. Sci. & Eng., Univ. of California at San Diego, La Jolla, CA ; Luke Barrington ; David Torres ; Gert Lanckriet

We present a computer audition system that can both annotate novel audio tracks with semantically meaningful words and retrieve relevant tracks from a database of unlabeled audio content given a text-based query. We consider the related tasks of content-based audio annotation and retrieval as one supervised multiclass, multilabel problem in which we model the joint probability of acoustic features and words. We collect a data set of 1700 human-generated annotations that describe 500 Western popular music tracks. For each word in a vocabulary, we use this data to train a Gaussian mixture model (GMM) over an audio feature space. We estimate the parameters of the model using the weighted mixture hierarchies expectation maximization algorithm. This algorithm is more scalable to large data sets and produces better density estimates than standard parameter estimation techniques. The quality of the music annotations produced by our system is comparable with the performance of humans on the same task. Our ldquoquery-by-textrdquo system can retrieve appropriate songs for a large number of musically relevant words. We also show that our audition system is general by learning a model that can annotate and retrieve sound effects.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:16 ,  Issue: 2 )