By Topic

Score-Independent Audio Features for Description of Music Expression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mion, L. ; Dept. of Inf. Eng., Padova Univ., Padova ; De Poli, G.

During a music performance, the musician adds expressiveness to the musical message by changing timing, dynamics, and timbre of the musical events to communicate an expressive intention. Traditionally, the analysis of music expression is based on measurements of the deviations of the acoustic parameters with respect to the written score. In this paper, we employ machine learning techniques to understand the expressive communication and to derive audio features at an intermediate level, between music intended as a structured language and notes intended as sound at a more physical level. We start by extracting audio features from expressive performances that were recorded by asking the musicians to perform in order to convey different expressive intentions. We use a sequential forward selection procedure to rank and select a set of features for a general description of the expressions, and a second one specific for each instrument. We show that higher recognition ratings are achieved by using a set of four features which can be specifically related to qualitative descriptions of the sound by physical metaphors. These audio features can be used to retrieve expressive content on audio data, and to design the next generation of search engines for music information retrieval.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:16 ,  Issue: 2 )