By Topic

Ultra-Wideband Waveform Generator Based on Optical Pulse-Shaping and FBG Tuning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We propose and demonstrate experimentally a prototype for ultra-wideband (UWB) waveform generator based on optical pulse shaping. The time-domain pulse shape is written in the frequency domain, and a single-mode fiber performs frequency-to-time conversion. A U.S. Federal Communications Commission (FCC)-compliant power efficient pulse shape is inscribed in the frequency domain by a fiber Bragg grating (FBG) with an excellent match between optimized and measured pulses. Two other popular UWB pulse shapes (Gaussian monocycle and doublet pulses) are achieved by proper tuning of two FBG-based variable optical filters. A balanced photodetector removes an unwanted rectangular pulse superimposed on the desired waveform, assuring compliance at low frequency.

Published in:

Photonics Technology Letters, IEEE  (Volume:20 ,  Issue: 2 )