By Topic

An efficient Genetic Algorithm with uniform crossover for the multi-objective Airport Gate Assignment Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hu, X.B. ; Univ. of Sussex, Brighton ; Di Paolo, E.

Genetic Algorithms (GAs) have a good potential of solving the Gate Assignment Problem (GAP) at airport terminals, and the design of feasible and efficient evolutionary operators, particularly, the crossover operator, is crucial to successful implementations. This paper reports an application of GAs to the multi-objective GAP. The relative positions between aircraft rather than their absolute positions in the queues to gates is used to construct chromosomes in a novel encoding scheme, and a new uniform crossover operator, free of feasibility problems, is then proposed, which is effective and efficient to identify, inherit and protect useful common sub-queues to gates during evolution. Extensive simulation studies illustrate the advantages of the proposed GA scheme with uniform crossover operator.

Published in:

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on

Date of Conference:

25-28 Sept. 2007