By Topic

Email Categorization Using Multi-stage Classification Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Islam, R. ; Deakin Univ., Melbourne ; Wanlei Zhou

This paper presents an innovative email categorization using a serialized multi-stage classification ensembles technique. Many approaches are used in practice for email categorization to control the menace of spam emails in different ways. Content-based email categorization employs filtering techniques using classification algorithms to learn to predict spam e-mails given a corpus of training e-mails. This process achieves a substantial performance with some amount of FP tradeoffs. It has been studied and investigated with different classification algorithms and found that the outputs of the classifiers vary from one classifier to another with same email corpora. In this paper we have proposed a multi-stage classification technique using different popular learning algorithms with an analyser which reduces the FP (false positive) problems substantially and increases classification accuracy compared to similar existing techniques.

Published in:

Parallel and Distributed Computing, Applications and Technologies, 2007. PDCAT '07. Eighth International Conference on

Date of Conference:

3-6 Dec. 2007