By Topic

The optimizing-simulator: Merging simulation and optimization using approximate dynamic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Powell, W.B. ; Univ. Princeton, Princeton

There is a wide range of simulation problems that involve making decisions during the simulation, where we would like to make the best decisions possible, taking into account not only what we know when we make the decision, but also the impact of the decision on the future. Such problems can be formulated as dynamic programs, stochastic programs and optimal control problems, but these techniques rarely produce computationally tractable algorithms. We demonstrate how the framework of approximate dynamic programming can produce near-optimal (in some cases) or at least high quality solutions using techniques that are very familiar to the simulation community. The price of this challenge is that the simulation has to be run iteratively, using statistical learning techniques to produce the desired intelligence. The benefit is a reduced dependence on more traditional rule-based logic.

Published in:

Simulation Conference, 2007 Winter

Date of Conference:

9-12 Dec. 2007