Cart (Loading....) | Create Account
Close category search window
 

Adaptive Neuro-Fuzzy Inference System Modeling of MRR and WIWNU in CMP Process With Sparse Experimental Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Availability of only limited or sparse experimental data impedes the ability of current models of chemical mechanical planarization (CMP) to accurately capture and predict the underlying complex chemomechanical interactions. Modeling approaches that can effectively interpret such data are therefore necessary. In this paper, a new approach to predict the material removal rate (MRR) and within wafer nonuniformity (WIWNU) in CMP of silicon wafers using sparse-data sets is presented. The approach involves utilization of an adaptive neuro-fuzzy inference system (ANFIS) based on subtractive clustering (SC) of the input parameter space. Linear statistical models were used to assess the relative significance of process input parameters and their interactions. Substantial improvements in predicting CMP behaviors under sparse-data conditions can be achieved from fine-tuning membership functions of statistically less significant input parameters. The approach was also found to perform better than alternative neural network (NN) and neuro-fuzzy modeling methods for capturing the complex relationships that connect the machine and material parameters in CMP with MRR and WIWNU, as well as for predicting MRR and WIWNU in CMP.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.