By Topic

Disconnected Skeleton: Shape at Its Absolute Scale

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Aslan, C. ; Microsoft Corp., Redmond, WA ; Erdem, A. ; Erdem, E. ; Tari, S.

We present a new skeletal representation along with a matching framework to address the deformable shape recognition problem. The disconnectedness arises as a result of excessive regularization that we use to describe a shape at an attainably coarse scale. Our motivation is to rely on stable properties the shape instead of inaccurately measured secondary details. The new representation does not suffer from the common instability problems of the traditional connected skeletons, and the matching process gives quite successful results on a diverse database of 2D shapes. An important difference of our approach from the conventional use of skeleton is that we replace the local coordinate frame with a global Euclidean frame supported by additional mechanisms to handle articulations and local boundary deformations. As a result, we can produce descriptions that are sensitive to any combination of changes in scale, position, orientation and articulation, as well as invariant ones.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 12 )