By Topic

Cooperation in multiple agents based on sharing policy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In human society, learning is essential to intelligent behavior. However, people do not need to learn everything from scratch by their own discovery. Instead, they exchange information and knowledge with one another and learn from their peers and teachers. When a task is too complex for an individual to handle, one may cooperate with its partners in order to accomplish it. Like human society, cooperation exists in the other species, such as ants that are known to communicate about the locations of food and move it cooperatively. Using the experience and knowledge of other agents, a learning agent may learn faster, make fewer mistakes, and create rules for unstructured situations. In the proposed learning algorithm, an agent adapts to comply with its peers by learning carefully when it obtains a positive reinforcement feedback signal, but should learn more aggressively if a negative reward follows the action just taken. These two properties are applied to develop the proposed cooperative learning method conceptually. The algorithm is implemented in some cooperative tasks and demonstrates that agents can learn to accomplish a task together efficiently through a repetitive trials.

Published in:

2007 IEEE International Conference on Systems, Man and Cybernetics

Date of Conference:

7-10 Oct. 2007