By Topic

Dynamic resource allocation with beamforming for MIMO OFDM systems: performance and effects of imperfect CSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ya-Han Pan ; Nanjing Telecommun. Technol. Inst., Nanjing ; Aissa, S.

We propose three different dynamic resource allocation algorithms using adaptive beamforming for multiple-input multiple-output (MIMO) OFDM systems, and investigate their performance over multipath fading channels under perfect and imperfect channel state information (CSI). These approaches involve the use of adaptive modulation, adaptive frequency-domain power allocation, and/or adaptive sub-channel allocation. By employing the proposed approaches in MIMO/OFDM systems, significant performance improvement can be achieved compared to the conventional adaptive antenna array based OFDM. The investigation of the effects of imperfect CSI reveals that the adaptive-modulation based approach is too sensitive to channel estimation errors, and that its performance is worse than the adaptive frequency-domain power allocation and/or adaptive sub-channel allocation approaches. The performance analysis also shows that combining adaptive power allocation with sub-channel allocation yields the best performance under imperfect CSI while being robust to channel estimation errors.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 12 )