Cart (Loading....) | Create Account
Close category search window
 

Multiobjective Evolution of Neural Controllers and Task Complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Capi, G. ; Toyama Univ., Toyama

Robots operating in everyday life environments are often required to switch between different tasks. While learning and evolution have been effectively applied to single task performance, multiple task performance still lacks methods that have been demonstrated to be both reliable and efficient. This paper introduces a new method for multiple task performance based on multiobjective evolutionary algorithms, where each task is considered as a separate objective function. In order to verify the effectiveness, the proposed method is applied to evolve neural controllers for the Cyber Rodent (CR) robot that has to switch properly between two distinctly different tasks: 1) protecting another moving robot by following it closely and 2) collecting objects scattered in the environment. Furthermore, the tasks and neural complexity are analyzed by including the neural structure as a separate objective function. The simulation and experimental results using the CR robot show that the multiobjective-based evolutionary method can be applied effectively for generating neural networks that enable the robot to perform multiple tasks simultaneously.

Published in:

Robotics, IEEE Transactions on  (Volume:23 ,  Issue: 6 )

Date of Publication:

Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.