By Topic

Parallel domain decomposition for simulation of large-scale power grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper presents fully parallel domain decomposition (DO) techniques for efficient simulation of large-scale linear circuits such as power grids. DD techniques that use non-overlapping and overlapping partitioning of power grids are described in this paper. Simulation results show that with the proposed parallel DD framework, existing linear circuit simulators can be extended to handle large-scale power grids. Results for circuits with more than four million nodes indicate that parallel DD with LU factorization is most suitable for power grid simulation. However, for densely connected power grids, parallel DD with additive Schwarz preconditioning offers maximum scalability and best performance.

Published in:

Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Conference on

Date of Conference:

4-8 Nov. 2007