Cart (Loading....) | Create Account
Close category search window
 

A Fully Bidirectional 2.4-GHz Wireless-Over-Fiber System Using Photonic Active Integrated Antennas (PhAIAs)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sittakul, V. ; Bristol Univ., Bristol ; Cryan, M.J.

This paper describes a low-cost scheme for implementing in-building distributed antenna systems using the photonic-active-integrated-antenna (PhAIA) concept, whereby photonic devices are integrated directly with planar antennas. Deembedded input impedance is measured for an 850-nm vertical-cavity surface-emitting laser and photodiode from 0-10 GHz, and the devices are matched directly to the nonradiating edge of a rectangular-microstrip-patch antenna. Link gain, 1-dB compression point, and spurious-free dynamic range are measured in the links. The fully bidirectional system, which is far from being completely optimized, is then tested over a 300-m laboratory-based multimode fiber link and a 220-m in-building dark-fiber link. Results are shown for throughput and signal-to-noise ratio, and this paper shows that such systems can achieve up to 10-m RF range, at reduced throughput, with no RF amplification.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.