By Topic

A Fully Bidirectional 2.4-GHz Wireless-Over-Fiber System Using Photonic Active Integrated Antennas (PhAIAs)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vitawat Sittakul ; Bristol Univ., Bristol ; Martin J. Cryan

This paper describes a low-cost scheme for implementing in-building distributed antenna systems using the photonic-active-integrated-antenna (PhAIA) concept, whereby photonic devices are integrated directly with planar antennas. Deembedded input impedance is measured for an 850-nm vertical-cavity surface-emitting laser and photodiode from 0-10 GHz, and the devices are matched directly to the nonradiating edge of a rectangular-microstrip-patch antenna. Link gain, 1-dB compression point, and spurious-free dynamic range are measured in the links. The fully bidirectional system, which is far from being completely optimized, is then tested over a 300-m laboratory-based multimode fiber link and a 220-m in-building dark-fiber link. Results are shown for throughput and signal-to-noise ratio, and this paper shows that such systems can achieve up to 10-m RF range, at reduced throughput, with no RF amplification.

Published in:

Journal of Lightwave Technology  (Volume:25 ,  Issue: 11 )