Cart (Loading....) | Create Account
Close category search window
 

Nested-Ring Mach–Zehnder Interferometer in Silicon-on-Insulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Darmawan, S. ; Nanyang Technol. Univ., Singapore ; Landobasa, Y.M. ; Dumon, P. ; Baets, R.
more authors

For the first time, a nested-ring Mach-Zehnder interferometer (MZI) on silicon-on-insulator is realized using a complementary metal-oxide-semiconductor-based process. In this letter, we verify that the device operates in two modes: the inner-loop resonance dominant mode due to strong build-up inside the inner-ring, and the double-Fano resonances mode due to strong light interaction with the outer loop. The results show that the inner-loop resonance is highly sensitive to the MZI arm imbalance compared to the double-Fano resonance mode. Based on these considerations, we obtain a good fit between theory and experiment.

Published in:

Photonics Technology Letters, IEEE  (Volume:20 ,  Issue: 1 )

Date of Publication:

Jan.1, 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.