By Topic

Physical Modeling of Fast p-i-n Diodes With Carrier Lifetime Zoning, Part I: Device Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents the development and implementation of a physics-based diode model which can simulate aspects of high-voltage diodes such as snappy recovery during punch-through and the modified carrier density profile due to local lifetime control. It uses a Fourier series solution for the ambipolar diffusion equation in the lightly doped base region. The model is compared with finite-element device simulations. A parameter extraction procedure for the diode with lifetime control is proposed in Part II.

Published in:

IEEE Transactions on Power Electronics  (Volume:23 ,  Issue: 1 )