By Topic

Pseudorandom Bits for Polynomials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bogdanov, A. ; State Univ. of New Jersey, Piscataway ; Viola, E.

We present a new approach to constructing pseudorandom generators that fool low-degree polynomials over finite fields, based on the Gowers norm. Using this approach, we obtain the following main constructions of explicitly computable generators G : FsrarrFn that fool polynomials over a prime field F: (1) a generator that fools degree-2 (i.e., quadratic) polynomials to within error 1/n, with seed length s = O(log n); (2) a generator that fools degree-3 (i.e., cubic) polynomials to within error epsiv, with seed length s = O(Iog|F| n) + f(epsiv, F) where f depends only on epsiv and F (not on n), (3) assuming the "Gowers inverse conjecture," for every d a generator that fools degree-d polynomials to within error epsiv, with seed length, s = O(dldrIog|F| n) + f(d, epsiv, F) where f depends only on d, epsiv, and F (not on n). We stress that the results in (1) and (2) are unconditional, i.e. do not rely on any unproven assumption. Moreover, the results in (3) rely on a special case of the conjecture which may be easier to prove. Our generator for degree-d polynomials is the component-wise sum of d generators for degree-l polynomials (on independent seeds). Prior to our work, generators with logarithmic seed length were only known for degree-1 (i.e., linear) polynomials (Naor and Naor; SIAM J. Comput., 1993). In fact, over small fields such as F2 = {0,1}, our results constitute the first progress on these problems since the long-standing generator by Luby, Velickovic and Wigderson (ISTCS1993), whose seed length is much bigger: s = exp (Omega(radiclogn)), even for the case of degree-2 polynomials over F2.

Published in:

Foundations of Computer Science, 2007. FOCS '07. 48th Annual IEEE Symposium on

Date of Conference:

21-23 Oct. 2007