By Topic

Systematic and Adaptive Characterization Approach for Behavior Modeling and Correction of Dynamic Nonlinear Transmitters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper proposes a comprehensive and systematic characterization methodology that is suitable for the forward and reverse behavior modeling of wireless transmitters (Txs) driven by wideband-modulated signals. This characterization approach can be implemented in adaptive radio systems since it does not require particular signal or training sequences. The importance of the nature of the driving signal and its average power on the behavior of radio-frequency Txs are experimentally investigated. Critical issues related to the proposed characterization approach are analytically studied. This includes a new delay-estimation method that achieves good accuracy with low computational complexity. In addition, the receiver linear calibration and its noise budget are investigated. To demonstrate the accuracy and robustness of the proposed method, a full characterization (including the memoryless nonlinearity and the memory effects) of a 100-W Tx driven by a multicarrier wideband code-division multiple-access signal is carried out, and its forward and reverse models are identified. Cascading the identified reverse model derived using the proposed methodology and the Tx prototype leads to excellent compensation of the static nonlinearities and the memory effects exhibited by the latter. Critical issues in implementing this approach are also discussed.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:56 ,  Issue: 6 )