By Topic

A Microcontroller-Based Architecture to Reduce Gravimeter Output for the Effect of Meteorological Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ando, B. ; Catania Univ., Catania

Continuously running gravimeters are usually adopted to overcome the drawbacks of discrete measurements that are used to monitor gravity changes in volcanic areas (i.e., inaccessibility during wintertime). Exogenous environmental parameters, however, usually affect the performance of these devices, and suitable analytical methodologies are adopted to compensate for these effects. This paper aims to demonstrate the features of the nonlinear compensation strategy that was introduced by the author in the previous works when a real-time reduction of the gravimeter output for the effect of meteorological parameters has to be performed. Moreover, a microcontroller-based electronics that implements such real-time compensation strategy is presented.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:56 ,  Issue: 6 )