By Topic

Diagnosis Problem Solving Using Fuzzy Relations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rotshtein, A.P. ; Dept. of Ind. Eng. & Manage., Jerusalem Coll. of Technol., Jerusalem ; Rakytyanska, H.B.

This paper deals with the restoration and the identification of the causes (diagnoses) through the observed effects (symptoms) on the basis of fuzzy relations and Zadeh's compositional rule of inference. We propose an approach for building fuzzy systems of diagnosis, which enables solving fuzzy relational equations together with design and tuning of fuzzy relations on the basis of expert and experimental information. The essence of tuning consists of the selection such membership functions for fuzzy causes and effects, and also fuzzy relations, which minimize the difference between model and experimental results of diagnosis. The genetic algorithm is used for solving the optimization problem. The proposed approach is illustrated by the computer experiment and the real example of diagnosis.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:16 ,  Issue: 3 )