By Topic

A Supervised Artificial Immune Classifier for Remote-Sensing Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The artificial immune network (AIN), which is a new computational intelligence model based on artificial immune systems inspired by the vertebrate immune system, has been widely utilized for pattern recognition and data analysis. However, due to the inherent complexity of current AIN models, their application to remote-sensing image classification has been rather limited. This paper presents a novel supervised classification algorithm based on a multiple-valued immune network, which is a novel AIN model, to perform remote-sensing image classification. The proposed method trains the immune network using the samples of regions of interest and obtains an immune network with memory to classify the remote-sensing imagery. Two experiments with different types of images are performed to evaluate the performance of the proposed algorithm in comparison with other traditional image classification algorithms: Parallelepiped, Minimum Distance, Maximum Likelihood, and Back-Propagation Neural Network. The results evince that the proposed algorithm consistently outperforms the traditional algorithms in all the experiments and, hence, provides an effective option for processing remote-sensing imagery.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 12 )