By Topic

Blind and Semiblind Channel and Carrier Frequency-Offset Estimation in Orthogonally Space-Time Block Coded MIMO Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shahram Shahbazpanahi ; Univ. of Ontario Inst. of Technol., Oshawa ; Alex B. Gershman ; Georgios B. Giannakis

In this paper, the problem of joint channel and carrier frequency offset (CFO) estimation is studied in the context of multiple-input multiple-output (MIMO) communications based on orthogonal space-time-block codes (OSTBCs). A new blind approach is proposed to jointly estimate the channel matrix and the CFO parameters using a relaxed maximum likelihood (ML) estimator that, for the sake of simplicity, ignores the finite alphabet constraint. Although the proposed technique can be applied to the majority of OSTBCs, there are, however, a few codes that suffer from an intrinsic ambiguity in the joint channel, CFO, and symbol estimates. For such specific OSTBCs, a semiblind modification of the proposed approach is developed that resolves the aforementioned estimation ambiguity. Our simulation results demonstrate that although the finite alphabet constraint is relaxed, the performance of the proposed techniques approaches that of the informed (fully frequency-synchronized and coherent) receiver, provided that a sufficient number of data blocks is available for each channel realization.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 2 )