Cart (Loading....) | Create Account
Close category search window
 

Geographically Weighted Visualization: Interactive Graphics for Scale-Varying Exploratory Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dykes, J. ; City Univ., London ; Brunsdon, C.

We introduce a series of geographically weighted (GW) interactive graphics, or geowigs, and use them to explore spatial relationships at a range of scales. We visually encode information about geographic and statistical proximity and variation in novel ways through gw-choropleth maps, multivariate gw-boxplots, gw-shading and scalograms. The new graphic types reveal information about GW statistics at several scales concurrently. We impement these views in prototype software containing dynamic links and GW interactions that encourage exploration and refine them to consider directional geographies. An informal evaluation uses interactive GW techniques to consider Guerry's dataset of 'moral statistics', casting doubt on correlations originally proposed through visual analysis, revealing new local anomalies and suggesting multivariate geographic relationships. Few attempts at visually synthesising geography with multivariate statistical values at multiple scales have been reported. The geowigs proposed here provide informative representations of multivariate local variation, particularly when combined with interactions that coordinate views and result in gw-shading. We argue that they are widely applicable to area and point-based geographic data and provide a set of methods to support visual analysis using GW statistics through which the effects of geography can be explored at multiple scales.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:13 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.