Cart (Loading....) | Create Account
Close category search window
 

Code Placement for Reducing the Energy Consumption of Embedded Processors with Scratchpad and Cache Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper proposes a code placement algorithm for reducing the total energy consumption of embedded processor systems including a CPU core, on-chip and off-chip memories. Our approach exploits a noncacheable memory region for an effective use of a cache memory and as a result, reduces the number of off-chip accesses. Our algorithm simultaneously finds code layouts for a cacheable region, a scratchpad region, and the other non-cacheable region of the address space so as to minimize the total energy consumption of the processor system. Experiments using a commercial embedded processor and an off-chip SDRAM demonstrate that our algorithm reduces the energy consumption of the processor system by 23% without any performance loss compared to the best result achieved by the conventional approach.

Published in:

Embedded Systems for Real-Time Multimedia, 2007. ESTIMedia 2007. IEEE/ACM/IFIP Workshop on

Date of Conference:

4-5 Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.