By Topic

Modeling the Impact of Checkpoints on Next-Generation Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

The next generation of capability-class, massively parallel processing (MPP) systems is expected to have hundreds of thousands of processors. For application-driven, periodic checkpoint operations, the state-of-the-art does not provide a solution that scales to next-generation systems. We demonstrate this by using mathematical modeling to compute a lower bound of the impact of these approaches on the performance of applications executed on three massive-scale, in-production, DOE systems and a theoretical petaflop system. We also adapt the model to investigate a proposed optimization that makes use of "lightweight" storage architectures and overlay networks to overcome the storage system bottleneck. Our results indicate that (1) as we approach the scale of next-generation systems, traditional checkpoint/restart approaches will increasingly impact application performance, accounting for over 50% of total application execution time; (2) although our alternative approach improves performance, it has limitations of its own; and (3) there is a critical need for new approaches to fault tolerance that allow continuous computing with minimal impact on application scalability.

Published in:

Mass Storage Systems and Technologies, 2007. MSST 2007. 24th IEEE Conference on

Date of Conference:

24-27 Sept. 2007