By Topic

An Efficient Parallel Implementation of the Hidden Markov Methods for Genomic Sequence-Search on a Massively Parallel System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Bioinformatics databases used for sequence comparison and sequence alignment are growing exponentially. This has popularized programs that carry out database searches. Current implementations of sequence alignment methods based on hidden Markov models (HMM) have proven to be computationally intensive and, hence, amenable to architectures with multiple processors. In this paper, we describe a modified version of the original parallel implementation of HMMs on a massively parallel system. This is part of the HMMER bioinformatics code. HMMER 2.3.2 uses profile HMMs for sensitive database searching based on statistical descriptions of a sequence family's consensus (Durbin et al., 1998), Two of the nine programs were further parallelized to take advantage of the large number of processors, namely, hmmsearch and hmmpfam. For our study, we start by porting the parallel virtual machine (PVM) versions of these two programs currently available as part of the HMMER suite of programs. We report the performance of these nonoptimized versions as baselines. Our work also includes the introduction of an alternate sequence file indexing, multiple-master configuration, dynamic data collection and, finally, load balancing via the indexed sequence files. This set of optimizations constitutes our modified version for massively parallel systems. Our results show parallel performance improvements of more than one order of magnitude (16 times) for hmmsearch and hmmpfam.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 1 )