By Topic

Interface Study of Metal Electrode and Semiconducting Carbon Nanotubes: Effects of Electrode Atomic Species

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
P. Tarakeshwar ; Korea Inst. for Adv. Study, Seoul ; J. J. Palacios ; Dae M. Kim

Presented herein are the first-principle calculations of the transport and other pertinent electronic properties of metal contacted semiconducting carbon nanotubes (CNTs). The investigation is focused on elucidating access resistance as a function of the work function difference and the chemical nature of the metal atomic species. Our results show that, for simple end-contact geometries, the Fermi level position within the gap differs between palladium-contacted CNTs and gold-contacted CNTs. This is interesting since both of these metals possess similar work functions. The role of the metal-CNT coupling is examined in light of the resulting - behavior of the system.

Published in:

IEEE Transactions on Nanotechnology  (Volume:7 ,  Issue: 2 )