By Topic

Measuring Land Development in Urban Regions Using Graph Theoretical and Conditional Statistical Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Unsalan, C. ; Yeditepe Univ., Istanbul

Inferring land use from satellite images is extensively studied by the remote sensing and pattern recognition communities. In previous studies, the focus was on classifying large regions due to the resolution of available satellite images. Nowadays, very high-resolution satellite imagery (Ikonos and Quickbird) allows researchers to focus on more complex land-use problems such as monitoring development in urban regions. Solutions to these complex problems may improve the life standards of city residents. To this end, we focus on automatically monitoring construction zones using their very high-resolution panchromatic satellite images through time. To monitor land development, we obtain sequential images of a selected region. Then, we extract features from each image in the sequence. Comparing values of these features, we expect to measure the degree of land development through time. In a similar study, we introduced graph theoretical measures over Ikonos imagery to measure organization in a given satellite image. This paper is an extension of our previous work with more powerful new features. Here, we first introduce a novel method to extract straight line segments using a least squares ellipse fitting. Then, we introduce four new graph theoretical features. More importantly, we introduce a novel method to embed the spatial information in gray-level co-occurrence matrix statistical features to measure land development. Finally, we test all our existing and new features to measure land development in 19 different urban construction zones. Our test set consists of Ikonos satellite images of these regions captured in separate times.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 12 )