By Topic

Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stability and speed of convergence. In this paper, a particle swarm optimization (PSO)-based learning rate adjustment method is proposed for BSS, and a simple decision-making method is introduced for how the learning rate should be applied in the current time slot. In the experiments, samples of four and ten source signals were mixed and separated and the results were compared with other related approaches. The proposed approach exhibits rapid convergence, and produces more efficient and more stable independent component analysis algorithms, than other related approaches.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:12 ,  Issue: 2 )