By Topic

Accelerating Differential Evolution Using an Adaptive Local Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nasimul Noman ; Tokyo Univ., Tokyo ; Hitoshi Iba

We propose a crossover-based adaptive local search (LS) operation for enhancing the performance of standard differential evolution (DE) algorithm. Incorporating LS heuristics is often very useful in designing an effective evolutionary algorithm for global optimization. However, determining a single LS length that can serve for a wide range of problems is a critical issue. We present a LS technique to solve this problem by adaptively adjusting the length of the search, using a hill-climbing heuristic. The emphasis of this paper is to demonstrate how this LS scheme can improve the performance of DE. Experimenting with a wide range of benchmark functions, we show that the proposed new version of DE, with the adaptive LS, performs better, or at least comparably, to classic DE algorithm. Performance comparisons with other LS heuristics and with some other well-known evolutionary algorithms from literature are also presented.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:12 ,  Issue: 1 )