By Topic

An Intelligent Online Monitoring and Diagnostic System for Manufacturing Automation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming Ge ; Chinese Univ. of Hong Kong, Shatin ; Yangsheng Xu ; Ruxu Du

Condition monitoring and fault diagnosis in modern manufacturing automation is of great practical significance. It improves quality and productivity, and prevents damage to machinery. In general, this practice consists of two parts: 1)extracting appropriate features from sensor signals and 2)recognizing possible faulty patterns from the features. Through introducing the concept of marginal energy in signal processing, a new feature representation is developed in this paper. In order to cope with the complex manufacturing operations, three approaches are proposed to develop a feasible system for online applications. This paper develops intelligent learning algorithms using hidden Markov models and the newly developed support vector techniques to model manufacturing operations. The algorithms have been coded in modular architecture and hierarchical architecture for the recognition of multiple faulty conditions. We define a novel similarity measure criterion for the comparison of signal patterns which will be incorporated into a novel condition monitoring system. The sensor-based intelligent system has been implemented in stamping operations as an example. We demonstrate that the proposed method is substantially more effective than the previous approaches. Its unique features benefit various real-world manufacturing automation engineering, and it has great potential for shop floor applications.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:5 ,  Issue: 1 )