By Topic

Web Navigation Prediction Using Multiple Evidence Combination and Domain Knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mamoun A. Awad ; United Arab Emirates Univ., Al Ain ; Latifur R. Khan

Predicting users' future requests in the World Wide Web can be applied effectively in many important applications, such as web search, latency reduction, and personalization systems. Such application has traditional tradeoffs between modeling complexity and prediction accuracy. In this paper, we study several hybrid models that combine different classification techniques, namely, Markov models, artificial neural networks (ANNs), and the All-Kth-Markov model, to resolve prediction using Dempster's rule. Such fusion overcomes the inability of the Markov model in predicting beyond the training data, as well as boosts the accuracy of ANN, particularly, when dealing with a large number of classes. We also employ a reduction technique, which uses domain knowledge, to reduce the number of classifiers to improve the predictive accuracy and the prediction time of ANNs. We demonstrate the effectiveness of our hybrid models by comparing our results with widely used techniques, namely, the Markov model, the All-Kth-Markov model, and association rule mining, based on a benchmark data set.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:37 ,  Issue: 6 )