By Topic

A Generic Mean Field Convergence Result for Systems of Interacting Objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We consider a model for interacting objects, where the evolution of each object is given by a finite state Markov chain, whose transition matrix depends on the present and the past of the distribution of states of all objects. This is a general model of wide applicability; we mention as examples: TCP connections, HTTP flows, robot swarms, reputation systems. We show that when the number of objects is large, the occupancy measure of the system converges to a deterministic dynamical system (the "mean field") with dimension the number of states of an individual object. We also prove a fast simulation result, which allows to simulate the evolution of a few particular objects imbedded in a large system. We illustrate how this can be used to model the determination of reputation in large populations, with various liar strategies.

Published in:

Quantitative Evaluation of Systems, 2007. QEST 2007. Fourth International Conference on the

Date of Conference:

17-19 Sept. 2007