Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A Runtime Analysis of Evolutionary Algorithms for Constrained Optimization Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Yuren Zhou ; South China Univ. of Technol., Guangzhou ; Jun He

Although there are many evolutionary algorithms (EAs) for solving constrained optimization problems, there are few rigorous theoretical analyses. This paper presents a time complexity analysis of EAs for solving constrained optimization. It is shown when the penalty coefficient is chosen properly, direct comparison between pairs of solutions using penalty fitness function is equivalent to that using the criteria ldquosuperiority of feasible pointrdquo or ldquosuperiority of objective function value.rdquo This paper analyzes the role of penalty coefficients in EAs in terms of time complexity. The results show that in some examples, EAs benefit greatly from higher penalty coefficients, while in other examples, EAs benefit from lower penalty coefficients. This paper also investigates the runtime of EAs for solving the 0-1 knapsack problem and the results indicate that the mean first hitting times ranges from a polynomial-time to an exponential time when different penalty coefficients are used.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:11 ,  Issue: 5 )