By Topic

Radar Frequency Modulations for Accelerating Targets under a Bandwidth Constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

An optimum frequency modulation for estimating the range, range rate, and range acceleration of a moving target is derived. The criterion of optimality is based on the estimate variances which are evaluated under the following assumptions: 1) additive white Gaussian observation noise, 2) high signal-to-noise ratio, 3) maximum-likelihood processing (matched filters), 4) RF phase used only for the range rate and range acceleration, and 5) carrier frequency much larger than the signal bandwidth. The choice of frequency modulation is constrained by the bandwidth of the transmitted signal. A large time-bandwidth product is assumed. The optimum frequency modulation consists of three appropriately placed frequency jumps between the limits imposed by the bandwidth constraint. This optimum modulation is compared with a third degree, power law modulation. The derivation of the optimum, originally done using Pontryagin's Maximum Principle, leads to the following very simple design principle; the optimum modulation is orthogonal to the target's motion.

Published in:

IEEE Transactions on Military Electronics  (Volume:9 ,  Issue: 1 )