By Topic

Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In January 2006, the Data Fusion Committee of the IEEE Geoscience and Remote Sensing Society launched a public contest for pansharpening algorithms, which aimed to identify the ones that perform best. Seven research groups worldwide participated in the contest, testing eight algorithms following different philosophies [component substitution, multiresolution analysis (MRA), detail injection, etc.]. Several complete data sets from two different sensors, namely, QuickBird and simulated Pleiades, were delivered to all participants. The fusion results were collected and evaluated, both visually and objectively. Quantitative results of pansharpening were possible owing to the availability of reference originals obtained either by simulating the data collected from the satellite sensor by means of higher resolution data from an airborne platform, in the case of the Pleiades data, or by first degrading all the available data to a coarser resolution and saving the original as the reference, in the case of the QuickBird data. The evaluation results were presented during the special session on data fusion at the 2006 international geoscience and remote sensing symposium in Denver, and these are discussed in further detail in this paper. Two algorithms outperform all the others, the visual analysis being confirmed by the quantitative evaluation. These two methods share the same philosophy: they basically rely on MRA and employ adaptive models for the injection of high-pass details.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:45 ,  Issue: 10 )