Cart (Loading....) | Create Account
Close category search window
 

Power-Laws in a Large Object-Oriented Software System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We present a comprehensive study of an implementation of the Smalltalk object oriented system, one of the first and purest object-oriented programming environment, searching for scaling laws in its properties. We study ten system properties, including the distributions of variable and method names, inheritance hierarchies, class and method sizes, system architecture graph. We systematically found Pareto - or sometimes log-normal - distributions in these properties. This denotes that the programming activity, even when modeled from a statistical perspective, can in no way be simply modeled as a random addition of independent increments with finite variance, but exhibits strong organic dependencies on what has been already developed. We compare our results with similar ones obtained for large Java systems, reported in the literature or computed by ourselves for those properties never studied before, showing that the behavior found is similar in all studied object oriented systems. We show how the Yule process is able to stochastically model the generation of several of the power-laws found, identifying the process parameters and comparing theoretical and empirical tail indexes. Lastly, we discuss how the distributions found are related to existing object-oriented metrics, like Chidamber and Kemerer's, and how they could provide a starting point for measuring the quality of a whole system, versus that of single classes. In fact, the usual evaluation of systems based on mean and standard deviation of metrics can be misleading. It is more interesting to measure differences in the shape and coefficients of the data?s statistical distributions.

Published in:

Software Engineering, IEEE Transactions on  (Volume:33 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.