By Topic

Realistic Design of Large-Hollow-Core Photonic Band-Gap Fibers With Suppressed Higher Order Modes and Surface Modes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper theoretically describes effective suppression of higher order modes (HOMs) in realistic large-hollow-core photonic band-gap fibers (PBGFs) and utilizes the use of this class of waveguides for low-loss data-transmission applications and high-power beam delivery systems. The proposed design strategy is based on the resonant-coupling mechanism of central air-core modes with defected outer core modes. By incorporating six 7-unit-cell air cores in the cladding of the PBGF with sixfold symmetry, it is possible by resonantly coupling the light corresponding to the HOMs in a central 19-unit-cell core into the outer 7-unit-cell core, thus significantly increasing the leakage losses of the HOMs in comparison to those of fundamental mode. We consider a realistic PBGF structure with hexagonal airholes having rounded corners and derive a surface-mode-free condition of a silica-ring thickness surrounding the hollow core for both 7-unit-cell and 19-unit-cell cores. Verification regarding the propagation properties of the proposed design is ensured with a PBGF analysis based on a finite element modal solver. Numerical results show that the leakage losses of the HOMs can be enhanced in a level of at least three orders of magnitude over 200-nm wavelength range in comparison to those of the fundamental mode, while in addition, we show that the incorporation of a realistic air core with optimized silica-ring thickness can eliminate surface modes and achieve strong confinement into the central core and very low eta-factor for the fundamental mode.

Published in:

Journal of Lightwave Technology  (Volume:25 ,  Issue: 9 )