By Topic

Stable direct adaptive neural network controller with a fuzzy estimator of the control error for a class of perturbed nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Belarbi ; Univ. of Constantine, Constantine ; M. Chemachema

A state feedback direct adaptive control algorithm for single input single output perturbed nonlinear systems in affine form using single hidden layer neural network is introduced. The weights adaptation laws are based on an estimated control error provided by a fuzzy inference system composed of heuristically determined rules. It provides a bounded estimate of the control error, which affects only the step size of the updating laws. It is shown that under mild conditions the state variables and the control input are bounded and the tracking error and its derivatives converge to a bounded compact set. The method does not require any preliminary offline training of the network weights. All states are supposed to be measurable. Two simulation studtracking error ies are presented for testing the proposed algorithm.

Published in:

IET Control Theory & Applications  (Volume:1 ,  Issue: 5 )