Cart (Loading....) | Create Account
Close category search window

Fault estimation and fault-tolerant control for descriptor systems via proportional, multiple-integral and derivative observer design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gao, Z. ; Tianjin Univ., Tianjin ; Ding, S.X.

We present a proportional, multiple-integral and derivative (PMID) observer technique that can simultaneously estimate system states, fault signals and the finite times derivatives of the faults for a descriptor system with input and measurement faults. Furthermore for a descriptor system with input and measurement faults and unknown disturbances (including modelling errors), a robust PMID observer is designed to simultaneously estimate system states, fault signals, the derivatives of the faults, and attenuate disturbances successfully. Fault-tolerant design is another important issue in this study. By using the obtained estimates of states and faults, and linear matrix inequality technique, a fault-tolerant control scheme is addressed, which ensures the closed-loop plant to be internally proper stable with prescribed Hinfin performance index even as unbounded faults occur. Finally, a numerical example is given to illustrate the design procedures, and simulations show satisfactory tracking and fault-tolerant control performance.

Published in:

Control Theory & Applications, IET  (Volume:1 ,  Issue: 5 )

Date of Publication:

Sept. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.