By Topic

Effect of Microstructure in Cellular Solids: Bending vs. Stretch Dominated Topologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alkhader, M. ; Illinois Inst. of Technol., Chicago ; Vural, M.

Rapid advance in additive manufacturing techniques promises that, in the near future, the fabrication of functional cellular structures will be achieved with desired cellular microstructures tailored to specific application in mind. In this perspective, it is essential to develop a detailed understanding of the relationship between mechanical response and cellular microstructure. The present study reports on the results of a series of computational experiments that explore the effect cellular topology and microstructural irregularity (or non-periodicity) on overall mechanical response of cellular solids. Compressive response of various 2D topologies such as honeycombs, stochastic Voronoi foams as well as tetragonal and triangular lattice structures have been investigated as functions of quantitative irregularity parameters.

Published in:

Recent Advances in Space Technologies, 2007. RAST '07. 3rd International Conference on

Date of Conference:

14-16 June 2007