By Topic

A Link State Advertisement Protocol for Optical Transparency Islands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Das, S. ; Univ. of Texas at Dallas, Richardson ; Tabrizi, R.R. ; Monti, P. ; Tacca, M.
more authors

Plug and play optical (PPO) nodes enable fast, re-configurable, and flexible ad hoc deployment of optical networks. Once plugged, the PPO nodes provide all-optical circuits between client nodes to alleviate the electronic processing bottleneck of high speed networks. To offer these wavelength routing functionalities to client nodes the PPO nodes must self-adjust to possible changes of the optical physical topology and fiber propagation characteristics. To discover such changes the PPO nodes must make use of a link state advertisement (LSA) protocol that is scalable in the number of plugged PPO nodes. This paper describes a scalable LSA protocol with constrained message flooding to match the limited propagation reach of the optical signal, i.e., the PPO node transparency island (TI). Scalability is thus achieved naturally by limiting the link state advertisement scope to only those PPO nodes that need to receive the link updates. As discussed in the paper, the proposed protocol appears to be a viable solution when the TI size is relatively small, e.g., in optical networks without signal regeneration.

Published in:

High Performance Switching and Routing, 2007. HPSR '07. Workshop on

Date of Conference:

May 30 2007-June 1 2007