Cart (Loading....) | Create Account
Close category search window
 

Potential Characterization of a Double SQUID Device for Quantum Computing Experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

We report on experiments performed on a system consisting of a double SQUID (superconducting quantum interference device) built with gradiometer geometry. Two single-turn coils provide two independent control fluxes: one of these allows biasing the device and tilting the potential, while the other changes the barrier height of the potential. When the dynamics of the inner dc SQUID can be neglected, the free energy of the double SQUID, as a function of the internal magnetic flux, is just the corrugated parabola of an rf SQUID whose local minima represent metastable states for the system. Our analysis instead is substantially concerned with the interesting phenomenology generated by the static configurations of an internal two-junction interferometer and by the tunability of the internal loop inductance. Two readout systems are employed to thoroughly characterize the dynamics of our system. We investigate the dynamical response at temperatures low enough (tens of mK) to minimize the effects of thermal fluctuations concentrating the analysis on the aspects that could be relevant for macroscopic quantum coherence and computing. The results indicate that from the finite inductance of the inner loop originates a potential well generating competing processes with the tunneling between the two main wells of the rf-SQUID potential.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.