By Topic

Predicting Interconnect Delay for Physical Synthesis in a FPGA CAD Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Manohararajah, V. ; Altera Toronto Technol. Center, Toronto ; Chiu, G.R. ; Singh, D.P. ; Brown, S.D.

This paper studies the prediction of interconnect delay in an industrial setting. Industrial circuits and two industrial field-programmable gate-array (FPGA) architectures were used in this paper. We show that there is a large amount of inherent randomness in a state-of-the-art FPGA placement algorithm. Thus, it is impossible to predict interconnect delay with a high degree of accuracy. Furthermore, we show that a simple timing model can be used to predict some aspects of interconnect timing with just as much accuracy as predictions obtained by running the placement tool itself. Using this simple timing model in a two-phase timing driven physical synthesis flow can both improve quality of results and decrease runtime. Next, we present a metric for predicting the accuracy of our interconnect delay model and show how this metric can be used to reduce the runtime of a timing driven physical synthesis flow. Finally, we examine the benefits of using the simple timing model in a timing driven physical synthesis flow, and attempt to establish an upper bound on these possible gains, given the difficulty of interconnect delay prediction.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 8 )