By Topic

On the Evaluation of Shortest Journeys in Dynamic Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ferreira, A. ; INRIA, Sophia Antipolis, ; Goldman, A. ; Monteiro, J.

The assessment of routing protocols for wireless networks is a difficult task, because of the networks' highly dynamic behavior and the absence of benchmarks. However, some of these networks, such as intermittent wireless sensors networks, periodic or cyclic networks, and low earth orbit (LEO) satellites systems, have more predictable dynamics, as the temporal variations in the network topology are somehow deterministic, which may make them easier to study. The graph theoretic model - the evolving graphs - was proposed to help capture the dynamic behavior of these networks, in view of the construction of least cost routing and other algorithms. Our recent experiments showed that evolving graphs have all the potentials to be an effective and powerful tool in the development of routing protocols for dynamic networks. In this paper, we evaluated the shortest journey evolving graph algorithm when used in a routing protocol for MANETs. We use the NS2 network simulator to compare this first implementation to the four well known protocols, namely AODV, DSR, DSDV, and OLSR. In this paper we present simulation results on the energy consumption of the nodes. We also included other EG protocol, namely EGForemost, in the experiments.

Published in:

Network Computing and Applications, 2007. NCA 2007. Sixth IEEE International Symposium on

Date of Conference:

12-14 July 2007