By Topic

From the Kneser-Poulsen conjecture to ball-polyhedra via Voronoi diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bezdek, K. ; Univ. of Calgary, Calgary

A very fundamental geometric problem on finite systems of spheres was independently phrased by Kneser (1955) and Poulsen (1954). According to their well-known conjecture if a finite set of balls in Euclidean space is repositioned so that the distance between the centers of every pair of balls is decreased, then the volume of the union (resp., intersection) of the balls is decreased (resp., increased). In the first half of this paper we survey the state of the art of the Kneser-Poulsen conjecture in Euclidean, spherical as well as hyperbolic spaces with the emphases being on the Euclidean case. The methods of the proofs for many of the results are strongly relying on the underlying (truncated) Voronoi diagrams. Based on that it seems very natural and important to study the geometry of intersections of finitely many congruent balls say, of unit balls, from the viewpoint of discrete geometry in Euclidean space. We call these sets ball-polyhedra. In the second half of this paper we survey a selection of fundamental results known on ball-polyhedra. Besides the obvious survey character of this paper we want to emphasize our definite intention to raise quite a number of open problems to motivate further research.

Published in:

Voronoi Diagrams in Science and Engineering, 2007. ISVD '07. 4th International Symposium on

Date of Conference:

9-11 July 2007