By Topic

Maintaining K-Anonymity against Incremental Updates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jian Pei ; Simon Fraser Univ., Canda ; Jian Xu ; Zhibin Wang ; Wei Wang
more authors

K-anonymity is a simple yet practical mechanismto protect privacy against attacks of re-identifying individuals by joining multiple public data sources. All existing methods achieving k-anonymity assume implicitly that the data objects to be anonymized are given once and fixed. However, in many applications, the real world data sources are dynamic. In this paper, we investigate the problem of maintaining k-anonymity against incremental updates, and propose a simple yet effective solution. We analyze how inferences from multiple releases may temper the k-anonymity of data, and propose the monotonic incremental anonymization property. The general idea is to progressively and consistently reduce the generalization granularity as incremental updates arrive. Our new approach guarantees the k-anonymity on each release, and also on the inferred table using multiple releases. At the same time, our new approach utilizes the more and more accumulated data to reduce the information loss.

Published in:

Scientific and Statistical Database Management, 2007. SSBDM '07. 19th International Conference on

Date of Conference:

9-11 July 2007