By Topic

A Unique Ultracapacitor Direct Integration Scheme in Multilevel Motor Drives for Large Vehicle Propulsion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lu, Shuai ; MTS Sysyt. Corp., Eden Prairie ; Corzine, K.A. ; Ferdowsi, M.

This paper introduces a new set of methods to directly integrate ultracapacitor banks into cascaded multilevel inverters that are used for large vehicle propulsion. The idea is to replace the regular dc-link capacitors with ultracapacitors in order to combine the energy storage unit and motor drive. This approach eliminates the need for an interfacing dc-dc converter and considerably improves the efficiency of regenerative braking energy restoration in large vehicles using multilevel converters. Utilizing the proposed modulation control set, the two cascaded inverters can have their dc voltage levels maintained at any ratio (even a noninteger ratio) or dynamically varied over a wide range without disrupting the normal operation of the electric motor. As an advantage, ultracapacitor voltage or state of charge can be freely controlled for braking and/or acceleration power management. A regenerative energy management scheme is also proposed based on the vehicle's speed range considerations. Detailed simulation and experimental results verified the proposed methods.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:56 ,  Issue: 4 )