By Topic

Atmospheric Turbulence-Degraded Image Restoration Using Principal Components Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dalong Li ; Center for Signal & Image Process., Georgia Inst. of Technol., Atlanta, GA ; Mersereau, R.M. ; Simske, S.

Our earlier work revealed a connection between blind image deconvolution and principal components analysis (PCA). In this letter, we explicitly formulate multichannel and single-channel blind image deconvolution as a PCA problem. Although PCA is derived from blur models that do not contain additive noise, it can be justified on both theoretical and experimental grounds that the PCA-based restoration algorithm is actually robust to the presence of white noise. The algorithm is applied to the restoration of atmospheric turbulence-degraded imagery and compared to an adaptive Lucy-Richardson maximum-likelihood algorithm on both real and simulated atmospheric turbulence blurred images. It is shown that the PCA-based blind image deconvolution runs faster and is more robust to noise.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 3 )